
SETTING UP AN EXPERIMENT

You have to use the MRS UAV System and implement your experiment in ROS (ROS 1, not
ROS 2). The repository for the MRS UAV System contains an installation guide and additional
documentation is on the wiki. The most important documents are Mandatory readings for
newcomers and How to start the simulation.

You have to prepare and demonstrate your experiment in the Gazebo simulator, which is
integrated with the MRS UAV System. If your experiment does not work in the simulator, it
cannot be executed in the real world.

These sensors are available for your experiments:

Basics:
● Pixhawk onboard sensors - IMU, Barometer, Magnetometer
● Onboard computer - Intel NUCi7 10th generation, 16GB RAM, core i7 x86 CPU
GNSS:
● M8N GPS receiver
● Emlid reach M2 RTK
Cameras:
● Bluefox MLC200w RGB or Grayscale + various lenses
● Basler dart daA1600-60uc RGB + various lenses
● Basler dart daA1920-160um Grayscale + various lenses
● Realsense D435i - RGBD + IMU
● Realsense D455 - RGBD
● PicoFlexx PMD 1 - ToF
● Realsense L515 - ToF
● Realsense T265
Lidars:
● Garmin Lidar Lite V3 (altitude measurement)
● RPLidar A3 (2D lidar)
● Ouster OS-1-16 (3D lidar)
● Ouster OS-0-128 (3D lidar)
Thermal Cameras:
● TeraRanger Evo Thermal 33
● FLIR Lepton
● FLIR Boson
Special:
● UVDAR relative localization system
● Custom VIO camera - Bluefox MLC200wG + synchronised IMU

Note that some sensors are only available in limited quantities.

AeroSTREAM Open Remote Laboratory - Experiment Preparation Guidelines 1/2

https://github.com/ctu-mrs/mrs_uav_system
https://www.ros.org/
https://github.com/ctu-mrs/mrs_uav_system
https://ctu-mrs.github.io/
https://ctu-mrs.github.io/docs/introduction/suggested_reading.html
https://ctu-mrs.github.io/docs/introduction/suggested_reading.html
https://ctu-mrs.github.io/docs/simulation/howto.html
https://github.com/ctu-mrs/uvdar_core

You can use multiple drones for your experiment, but there is a difference between the
simulator and real world. In the simulator, the code is running centrally on one computer, while
in the real world, each drone is running its code onboard. This means that if you want to share
any data between the drones, it has to happen over Wi-Fi using the nimbro_network package.
You can communicate with ROS topics and services using nimbro_network, but expect a low
bandwidth (for example streaming images between multiple drones is not really possible) and
unreliability.

When preparing for the real-world experiment, you should consider these guidelines:

Do not hardcode things.
People often start by hardcoding things like the UAV_NAME, or parameters of their programs.
This is very impractical during a real-world experiment. The UAV_NAME is stored in the
$UAV_NAME environmental variable, and your code should load it and use it. Configurable
parameters of your code should be loaded from a config file, which can be changed without the
need to recompile your code. Use our example ros node as inspiration.

Do not launch new nodes during flight.
Your node should be running even before takeoff, in a “deactivated” state (e.g. not sending
“goto” commands). You should have an activation service, which will be called (manually or
automatically) after the takeoff is finished. This way, if your node crashes for some reason, we
can see it even before takeoff, which saves time and batteries. Also, starting a new ros node
can be hard on the CPU load, which is not what we want during flight.

The real world is different from simulations.
You should expect that in the real world, the initial position of the UAV will not be 0,0 and the
heading will not be the same every time. The safety area is constrained by the real-world
environment, and therefore it can have an arbitrary shape and orientation. If you are using a
GPS/RTK localization, the X-axis will be aligned with the East direction and Y will be aligned
with the North direction.

Your code has to have human-readable debug/status outputs
Your node should print out its status in a human-readable form. The output should, for example,
contain the current state of your node, information about what data the node is waiting for, what
it is publishing, etc.

You have to prepare your own real-world tmux script.
You should start with our template tmux script, copy it into your repository and modify it according
to your needs. This tmux script should run all your nodes, and it should contain panes for calling
your services (if necessary). You should not run anything outside of this tmux script.

AeroSTREAM Open Remote Laboratory - Experiment Preparation Guidelines 2/2

https://github.com/ctu-mrs/nimbro_network
https://github.com/ctu-mrs/example_ros_uav
https://github.com/ctu-mrs/uav_core/tree/master/tmux_scripts/swarming_template

